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Abstract Graph processing is becoming increasingly preva-
lent across many application domains. In spite of this preva-
lence, there is little research about how graphs are actually
used in practice. We performed an extensive study that con-
sisted of an online survey of 89 users, a review of the mailing
lists, source repositories, and whitepapers of a large suite of
graph software products, and in-person interviews with 6
users and 2 developers of these products. Our online survey
aimed at understanding: (i) the types of graphs users have;
(ii) the graph computations users run; (iii) the types of graph
software users use; and (iv) the major challenges users face
when processing their graphs. We describe the participants’
responses to our questions highlighting common patterns and
challenges. Based on our interviews and survey of the rest
of our sources, we were able to answer some new questions
that were raised by participants’ responses to our online sur-
vey and understand the specific applications that use graph
data and software. Our study revealed surprising facts about
graph processing in practice. In particular, real-world graphs
represent a very diverse range of entities and are often very
large, scalability and visualization are undeniably the most
pressing challenges faced by participants, and data integra-
tion, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope
these findings can guide future research.

1 Introduction

Graph data representing connected entities and their rela-
tionships appear in many application domains, most natu-
rally in social networks, the web, the semantic web, road
maps, communication networks, biology, and finance, just to
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name a few examples. There has been a noticeable increase
in the prevalence of work on graph processing both in re-
search and in practice, evidenced by the surge in the number
of different commercial and research software for managing
and processing graphs. Examples include graph database
systems [13,20,26,49,65,73,90], RDF engines [52,96], lin-
ear algebra software [17,63], visualization software [25,29],
query languages [41, 72, 78], and distributed graph process-
ing systems [30, 34, 40]. In the academic literature, a large
number of publications that study numerous topics related
to graph processing regularly appear across a wide spectrum
of research venues.

Despite their prevalence, there is little research on how
graph data is actually used in practice and the major chal-
lenges facing users of graph data, both in industry and re-
search. In April 2017, we conducted an online survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?
(iii) Which software do users use to perform their computa-

tions?
(iv) What are the major challenges users face when process-

ing their graph data?

Our major findings are as follows:
• Variety: Graphs in practice represent a very wide vari-
ety of entities, many of which are not naturally thought
of as vertices and edges. Most surprisingly, traditional
enterprise data comprised of products, orders, and trans-
actions, which are typically seen as the perfect fit for
relational systems, appear to be a very common form of
data represented in participants’ graphs.
• Ubiquity of Very Large Graphs: Many graphs in prac-
tice are very large, often containing over a billion edges.
These large graphs represent a very wide range of entities
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and belong to organizations at all scales from very small
enterprises to very large ones. This refutes the sometimes
heard assumption that large graphs are a problem for only
a few large organizations such as Google, Facebook, and
Twitter.
• Challenge of Scalability: Scalability is unequivocally the
most pressing challenge faced by participants. The ability
to process very large graphs efficiently seems to be the
biggest limitation of existing software.
• Visualization:Visualization is a very popular and central
task in participants’ graph processing pipelines. After
scalability, participants indicated visualization as their
second most pressing challenge, tied with challenges in
graph query languages.
• Prevalence of RDBMSes: Relational databases still play
an important role in managing and processing graphs.

Our survey also highlights other interesting facts, such as
the prevalence of machine learning on graph data, e.g., for
clustering vertices, predicting links, and finding influential
vertices.

We further reviewed user feedback in the mailing lists,
bug reports, and feature requests in the source code reposito-
ries of 22 software products between January and September
of 2017 with two goals: (i) to answer several new questions
that the participants’ responses raised; and (ii) to identify
more specific challenges in different classes of graph tech-
nologies than the ones we could identify in participants’
responses. For some of the questions in our online survey,
we also compared the graph data, computations, and soft-
ware used by the participants with those studied in academic
publications. For this, we reviewed 252 papers from 3 dif-
ferent year’s proceedings of 7 conferences across different
academic venues.

Different database technologies and research topics are
often motivated with a small set of common applications,
informally referred to as “killer” applications of the tech-
nology. For example, object-oriented database systems are
associated with computer-aided design and manufacturing,
and XML is associated with the web. An often-asked ques-
tion in the context of graphs is: What is the killer application
of graph software products? The wide variety of graphs and
industry fields mentioned by our online survey participants
hinted that we cannot pinpoint a small set of such appli-
cations. To better understand the applications supported by
graphs, we reviewed the whitepapers posted on the web-
sites of 8 graph software products. We also interviewed 6
users and 2 developers of graph processing systems. Our re-
views and interviews corroborated our findings that graphs
have a very wide range of applications but also highlighted
several common applications, primarily in data integration,
recommendations, and fraud detection, as well as several
new applications we had not identified in our online survey.

Our interviews also give more details than our online survey
about the actual graphs used by enterprises and how they are
used in applications.

In addition to discussing the insights we gained through
our study, we discuss several directions about the future of
graph processing. We hope our study can inform research
about real use cases and important problems in graph pro-
cessing.

2 Methodology of Online Survey, Mailing Lists, Source
Repositories, and Academic Publications

In this section, we first describe the format of our survey and
then how we recruited the participants. Next we describe the
demographic information of the participants, including the
organizations they come from and their roles in their orga-
nizations. Then we describe our methodology of reviewing
academic publications. Then we describe our methodology
for reviewing the user feedback in the mailing lists, bug re-
ports, and feature requests in the source code repositories of
the software products. We end this section with a discussion
of our methodology, which we believe other researchers can
easily reproduce to study the uses of other technology, and
some lessons we learned from our experience of perform-
ing a user study. We review our methodology of reviewing
whitepapers and our interviews in Sections 4.1 and 5.1, re-
spectively.

2.1 Online Survey Format and Participants

2.1.1 Format

The survey was in the format of an online form. All of the
questions were optional and participants could skip any num-
ber of questions. There were 2 types of questions:

(i) Multiple Choice: There were 3 types of multiple choice
questions: (a) yes-no questions; (b) questions that al-
lowed only a single choice as a response; and (c) ques-
tions that allowed multiple choices as a response. The
participants could use an Other option when their an-
swers required further explanation or did not match any
of the provided choices. We randomized the order of
choices in questions about the computations partici-
pants run and the challenges they face.

(ii) Short Answer: For these questions, the participants en-
tered their responses in a text box.

There were 34 questions grouped into six categories: (i) de-
mographic questions; (ii) graph datasets; (iii) graph and ma-
chine learning computations; (iv) graph software; (v) major
challenges; and (vi) workload breakdown.

2.1.2 Participant Recruitment

We prepared a list of 22 popular software products for pro-
cessing graphs (see Table 1) that had public user mailing
lists covering 6 types of technologies: graph database sys-
tems, RDF engines, distributed graph processing systems
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Table 1: Software products used for recruiting participants
and the count of active users in their mailing list in Feb-Apr
2017. Last column is the total count of each type of software.

Technology Software # Users

Graph Database
System

ArangoDB [13] 40

238

Caley [20] 14
DGraph [26] 33
JanusGraph [49] 32
Neo4j [65] 69
OrientDB [73] 45
Sparksee [90] 5

RDF Engine Apache Jena [52] 87 110Virtuoso [96] 23

Distributed Graph
Processing Engine

Apache Flink (Gelly) [30] 24
39Apache Giraph [34] 8

Apache Spark (GraphX) [40] 7

Query Language Gremlin [41] 82 82

Graph Library

Graph for Scala [35] 4

97

GraphStream [37] 8
Graphtool [38] 28
NetworKit [68] 10
NetworkX [69] 27
SNAP [84] 20

Graph Visualization Cytoscape [25] 93 116Elasticsearch X-Pack Graph [29] 23

Graph Representation Conceptual Graphs [23] 6 6

(DGPSes), graph libraries to run and compose graph algo-
rithms, visualization software, and graph query languages.1
Our goal was to be as comprehensive as possible in recruiting
participants from the users of different graph technologies.
However, we acknowledge that this list is incomplete and
does not cover all of the graph software used in practice.

We conducted the survey in April 2017, and used 4meth-
ods to recruit participants from the users of these 22 software
products:

• Mailing Lists: We posted the survey to the user mailing
lists of the software in our list.
• Private Emails: Five mailing lists: (i) Neo4j; (ii) Ori-
entDB; (iii) ArangoDB; (iv) JanusGraph; and (v) Net-
workX, allowed us to send private emails to the users.
We sent private emails to 171 users who were active on
these mailing lists between February and April of 2017.
• Slack Channels: Two of the software products on our list,
Neo4j and Cayley, had Slack channels for their users. We
posted the survey to these channels.
• Twitter: A week after posting our survey to the mailing
lists and Slack channels and sending private emails, we
posted a tweet with a link to our survey to 7 of the 22

1 The linear algebra software we considered, e.g., BLAS [17] and
MATLAB [63], either did not have a public mailing list or their lists
were inactive.

Table 2: The participants’ fields of work.

Field Total R P

Information & Technology 48 12 36
Research in Academia 31 31 0
Finance 12 2 10
Research in Industry Lab 11 11 0
Government 7 3 4
Healthcare 5 3 2
Defense & Space 4 3 1
Pharmaceutical 3 0 3
Retail & E-Commerce 3 0 3
Transportation 2 0 2
Telecommunications 1 1 0
Insurance 0 0 0
Other 5 2 3

software products that had an official Twitter account.
Only Neo4j retweeted our tweet.

Participants that we recruited through different methods sha-
red the same online link and we could not tell the number
of participants recruited from each method. In particular,
we suspect that there were more users from graph database
systems mainly because their mailing lists contained more
active users, as can be seen in Table 1. Moreover, 4 of the
5 mailing lists that allowed us to send private emails and
the Slack and Twitter channels belonged to graph database
systems. We note that after posting the survey on Twitter, we
received 12 responses.

In the end, there were 89 participants. Below, we give an
overview of the organizations these participants work in and
the role of the participants in their organizations.

Field of Organizations: We asked the participants which
field they work in. Participants could select multiple options.
Table 2 shows the 12 choices and participants’ responses.
In the table, “R” and “P” indicate researchers and practi-
tioners (defined momentarily), respectively. In addition to
the given choices, using the Other option, participants in-
dicated 5 other fields: education, energy market, games and
entertainment, investigations and audits, and grassland man-
agement. In total, participants indicated 17 different fields,
demonstrating that graphs are being used in a wide variety
of fields. Throughout the survey, we group the participants
into 2 categories:

• Researchers are the 36 participants who indicated at least
one of their fields as research in academia or research
in an industry lab. Some of these participants further
selected other choices as their fields, the most popular
of which were information and technology, government,
defense and space, and health care.
• Practitioners are the remaining 53 participants who did
not select research in academia or an industry lab. The
top two fields of practitioners were information and tech-
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Table 3: Size of the participants’ organizations.

Size Total R P

1−10 27 17 10
10−100 23 6 17
100−1000 14 4 10
1000−10000 6 4 2
> 10000 15 4 11

nology and finance, indicated by 36 and 10 people, re-
spectively.

In the remainder of this paper, we will explicitly indicate
when the responses of the researchers and practitioners to
our survey questions differ significantly. In the absence of an
explicit comparison, readers can assume that both groups’
responses were similar.

Size of Organizations: Table 3 shows the sizes of the orga-
nizations that the participants work in, which ranged from
very small organizations with less than 10 employees to very
large ones with more than 10,000 employees.

Role at Work: We asked the participants their roles in their
organizations and gave them the following 4 choices: (i) re-
searcher; (ii) engineer; (iii) manager; and (iv) data analyst.
Participants could select multiple options. The top 4 roles
were engineers, selected by 54, researchers, selected by 48,
data analysts, selected by 18, and managers, selected by 16.
The other roles participants indicated were architect, devops,
and student.

2.2 Review of Academic Publications

In order to compare the graph data, computations, and soft-
ware academics work on with those that our participants
indicated, we surveyed papers in the proceedings of 3 differ-
ent years of the 7 academic conferences shown in Table 4.2
Our goal in choosing these conferenceswas to select a variety
of venues where papers on graph processing are published.
Specifically, our list consists of venues in databases, data
mining, machine learning, operating systems, high perfor-
mance computing, and cloud computing. For each paper in
these proceedings, we first selected the ones that directly
studied a graph computation or were developing graph pro-
cessing software. We omitted papers that were not primarily
focused on graph processing, even if they used a graph al-
gorithm as a subroutine to solve a problem. For example,
we omitted a paper studying a string matching algorithm
that uses a graph algorithm as a subroutine. In the end, we
selected 252 papers.

For each of the 252 papers, we identified: (i) the graph
datasets used in experiments; (ii) the graph and machine
learning computations that appeared in the paper; and (iii) the

2 For each conference, we initially surveyed one year selected be-
tween 2014 to 2016 and later extended the survey to include the years
2017 and 2018. Note that OSDI and SOSP are held in alternating years.

Table 4: Academic conferences and surveyed years.

Conference Years reviewed

VLDB 2014 [48], 2017 [18], 2018 [8]
KDD 2015 [54], 2017 [55], 2018 [56]
SOCC 2015 [85], 2017 [86], 2018 [87]
OSDI / SOSP 2016 [57], 2017 [88], 2018 [12]
ICML 2016 [15], 2017 [75], 2018 [28]
SC 2016 [80], 2017 [81], 2018 [82]

graph software used in the paper. In our survey, we asked
users questions about which graph and machine learning
computations they perform. The choiceswe provided in these
questions came from the computations we identified in these
publications (see Sections 3.2.1 and 3.2.2 and Appendices A
and B for details).

2.3 Review of Emails and Code Repositories

To answer some questions that participants’ responses raised
and to identify more specific challenges users face than the
ones we identified from participants’ responses, we reviewed
emails in the mailing lists of the 22 software products be-
tween January and September of 2017. In addition, 20 of
these 22 software products had open source code reposi-
tories. We reviewed the bug reports and feature requests
(issues henceforth) in these repositories between January
and September of 2017. We also reviewed the reposito-
ries of 2 popular graph visualization tools: Gephi [33] and
Graphviz [39]. For emails and issues before January 2017,we
performed a targeted keyword search to find more instances
of the challenges we identified in the January-September
2017 review.

In total, we reviewed over 6000 emails and issues. The
overwhelming majority of the emails and issues were rou-
tine engineering tasks, such as users asking how to write a
query or developers asking for integration with another soft-
ware. The number of emails and issues that were useful for
identifying challenges were 299 in total. We review these
challenges in Section 3.4.2. Table 22 in the appendix shows
the exact number of emails and issues we reviewed for each
product, and the number of commits in its code repository to
give readers a sense of how active these repositories are.

2.4 Note on Methodology

We end this section with two points about our methodol-
ogy and a brief summary of the lessons we learned from
performing a user study.

Biases: Performing a survey study brings up challenging
methodological questions, such as What is a principled way
of recruiting participants, picking a list of choices for graph
queries, or reviewing academic publications? Our guiding
principle when addressing these questions was to be as broad
as possible and to avoid ad-hoc decisions. For example, the
initial 22 graph software productswe foundwere the products
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that had open source mailing lists of a much longer list of all
products we were aware of.

Similarly, when asking about the different graph queries
and computations, instead of an ad-host list of choices, we
gathered a list from academic publications. However, the
choices we made inevitably introduced biases.

We acknowledge these biases when we present our find-
ings in later sections. In particular, the numbers we report
should not be interpreted statistically. Our goal was not to
understand any statistical property, e.g., the average number
of edges, about the graphs used in practice or users of graphs.
Despite these biases, we found overwhelming evidence for
some of our observations, which we believe give insights
into how graphs are used in practice.

Abundance of Public Information: Having direct access to
actual users from industry is a known challenge for re-
searchers in academia. There is, however, an abundance of
public information in mailing lists, forums, vendor websites,
open source code repositories, social media, question-and-
answer websites, and elsewhere, which can be used to survey
actual users and arrange in-person interviews. In this paper,
we essentially reviewed this public information and used it
to contact actual users. Our work is not the first but the most
extensive that we know of in terms of the public sources it
reviews. We believe our methodology can easily be repeated
by researchers in academia to study how other types of data
or technology is used in practice.

Lessons from the Survey Methodology: We highlight three
lessons fromour experience of applying ourmethodology.

• Lesson 1: Many users are willing to share information.
Especially for our online survey, we did not expect to
recruit 89 participants prior to sending the survey out.
• Lesson 2:Avoid making assumptions about participants’
answers in the survey. For instance, as we discuss in
Section 3.1.2, we assumed few users would have edge
graphs with more than 1 billion edges, so capped the
choices of a question about graph sizes at 1 billion. This
resulted in losing important information about howmuch
larger the graphs are beyond 1B.
• Lesson 3: Users have different and often non-technical
languages than researchers to explain their technology.
For instance, our interviewwith a biologist using an RDF
engine heavily involved terms such as tissues, processes,
angiogenesis, molecules and chemical reactions. This re-
quired spending considerable time during the interview
on terminology,which put a hurdle on focusing on techni-
cal topics on graph processing. We learned to thoroughly
study our inteviewee’s products and application domains
prior to an interview.

3 Online Survey
In this section, we describe the questions we asked in the
survey and report the responses of the participants. We also
report the results of our review of academic publications.
Throughout the section,we highlight the results thatwe found
particularly interesting or surprising.

3.1 Graph Datasets

In this section, we describe the properties of the graph
datasets that the participants work with.

3.1.1 Real-World Entities Represented

We asked the participants about the real-world entities that
their graphs represent. We provided them with 4 choices and
the participants could select multiple of them.
(i) Humans: e.g., employees, customers, and their interac-

tions.
(ii) Non-Human Entities: e.g., products, transactions, or

web pages.
(iii) RDF or Semantic Web.
(iv) Scientific: e.g., chemical molecules or biological pro-

teins.
For the participants who selected non-human entities, we
followed up with a short-answer question asking them to
describe what these are. Participants indicated 52 different
kinds of non-human entities, which we group into 7 broad
categories.3 We indicate the acronyms we use in our tables
for each category in parentheses:
(i) Products (NH-P): e.g., products, orders, and transac-

tions.
(ii) Business and Financial Data (NH-B): e.g., business

assets, funds, or bitcoin transfers.
(iii) World Wide Web Data (NH-W).
(iv) Geographic Maps (NH-G): e.g., roads, bicycle sharing

stations, or scenic spots.
(v) Digital Data (NH-D): e.g., files and folders or videos

and captions.
(vi) Infrastructure Networks (NH-I): e.g., oil wells and pipes

or wireless sensor networks.
(vii) Knowledge and Textual Data (NH-K): e.g., keywords,

lexicon terms, words, and definitions.
Table 5 shows the responses. In the table, the number of
academic publications that use each type of graph is listed in
the A row. We highlight two interesting observations:
• Variety: Real graphs capture a very wide variety of en-
tities. Readers may be familiar with entities such as so-
cial connections, infrastructure networks, and geographic
maps. However, many other entities in the participants’
graphs may be less natural to think of as graphs. These

3 Six entities that the participants mentioned did not fall under any
of our 7 categories, which we list for completeness: call records, com-
puters, cars, houses, time slots, and specialties.
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Table 5: Real-world entities represented by the participants’ graphs and studied in publications. Legend for non-human
entities: Products (NH-P), Business and Financial Data (NH-B), Web Data (NH-W), Geographic Maps (NH-G), Digital
Data (NH-D), Infrastructure Networks (NH-I), Knowledge and Textual Data (NH-K).

Category Human RDF Scientific Non-Human NH-P NH-B NH-W NH-G NH-D NH-I NH-K

Total 45 23 15 60 13 11 4 7 5 9 11
R 18 11 9 22 1 6 2 4 1 7 6
P 27 12 6 38 12 5 2 3 4 2 5
A 165 20 45 169 7 28 77 33 0 17 11

Table 6: The sizes of the participants’ graphs.
(a) Number of vertices.

Vertices Total R P

< 10K 22 11 11
10K−100K 22 9 13
100K−1M 19 7 12
1M−10M 17 6 11
10M−100M 20 10 10
> 100M 27 10 17

(b) Number of edges.

Edges Total R P

< 10K 23 11 12
10K−100K 22 9 13
100K−1M 13 3 10
1M−10M 9 5 4
10M−100M 21 8 13
100M−1B 21 8 13
> 1B 20 8 12

(c) Total uncompressed bytes.

Size Total R P

< 100MB 23 12 11
100MB−1GB 19 9 10
1GB−10GB 25 9 16
10GB−100GB 17 5 12
100GB−1TB 20 8 12
> 1TB 17 5 12

Table 7: Sizes of organization using graphs with >1B edges.

Size 1−10 10−100 100−1000 > 10000

# 4 4 7 4

include malware samples and their relationships, videos
and captions, or scenic spots, among others. This lends
credence to the cliché that graphs are everywhere.
• Product Graphs: Products, orders, and transactions were
the most popular non-human entities represented in prac-
titioners’ graphs, indicated by 12 practitioners. This con-
trasts with their relative unpopularity among researchers
and academics. Only 1 researcher used product graphs
and after digital data graphs, product graphs were the
second least popular graphs used in academic papers.
Such product-order-transaction data is traditionally the
classic example of enterprise data that perfectly fits the
relational data model. It is interesting that enterprises
represent similar product data as graphs, possibly be-
cause they find value in analyzing connections in such
data.

We also note that we expected scientific graphs to be used
mainly by researchers. Surprisingly, scientific graphs are
prevalent among practitioners as well.

3.1.2 Size

We asked the participants the number of vertices, number
of edges, and total uncompressed size of their graphs. They
could select multiple options. Tables 6a, 6b, and 6c show
the responses. As shown in the tables, graphs of every size,
from very small ones with less than 10K edges to very large
ones with more than 1B edges, are prevalent across both

researchers and practitioners. We make one interesting ob-
servation:

• The Ubiquity of Very Large Graphs: A significant num-
ber of participants work with very large graphs. Specifi-
cally, 20 participants (8 researchers and 12 practitioners)
indicated using graphs with more than a billion edges.
Moreover, the 20 participants with graphs with more
than one billion edges are from organizations with dif-
ferent scales, ranging from very small to very large, as
shown in Table 7. This refutes the common assumption
that only very large organizations—such as Google [62],
Facebook [21], and Twitter [83] that have web and social
network data—have very large graphs. Finally, we note
that these large graphs represent a variety of entities, in-
cluding social, scientific, RDF, product, and digital data,4
indicating that very large graphs appear in a wide range
of domains.

One thing that is not clear from our survey is how much
larger the participants’ graphs are beyond the maximum lim-
its we inquired about (100 million vertices, 1 billion edges,
and 1TB uncompressed data). In order to answer this ques-
tion, we categorized the graph sizes mentioned in the user
emails we reviewed that were beyond these sizes. Focusing
on the number of edges, we found 42 users with 1–10B-
edge graphs, 17 with 10B–100B-edge graphs, and 7 users
processing graphs over 100B edges. Two participants also
clarified through an email exchange that their graphs con-

4 Some participants selected multiple graph sizes and multiple en-
tities, so we cannot perform a direct match of which graph size cor-
responds to which entity. The entities we list here are taken from the
participants who selected a single graph size and entity, so we can
directly match the size of the graph to the entity.
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Table 8: The topology and stored data types of the participants’ graphs.
(a) Directed vs. Undirected

Topology Total R P

Only Directed 63 23 40
Only Undirected 11 6 5
Both 15 7 8

(b) Simple vs. Multigraphs

Topology Total R P

Only Simple Graphs 26 9 17
Only Multigraphs 50 20 30
Both 13 7 6

(c) Data types stored on vertices and edges.

Type Vertices Edges

Total R P Total R P

String 79 31 48 66 24 42
Numeric 63 23 40 59 23 36
Date/Timestamp 56 19 37 49 18 31
Binary 15 8 7 8 4 4

Table 9: Frequency of changes.

Frequency Total R P

Static 40 21 19
Dynamic 55 22 33
Streaming 18 9 9

tained 4B and 30B edges. As in our survey results, these
large graphs represented a wide range of entities, such as
product-order-transaction data, or entities from agriculture
and finance. Table 20 in the appendix shows the exact dis-
tribution of sizes we identified. As we discuss in Section 5,
several of the applications described in our applications also
contained graphs in the 10B-100B-edge and over 100B-edge
scale.

3.1.3 Other Questions on Graph Datasets

Topology: We asked the participants whether their graphs
were: (i) directed or undirected; and (ii) simple graphs or
multigraphs. We clarified that multigraphs are those with
possibly multiple edges between two vertices, while simple
graphs do not allow multiple edges between two vertices.
Tables 8a and 8b show the responses.

Types of Data Stored on Vertices and Edges: We asked
the participants whether they stored data on the vertices and
edges of their graphs. All participants except 3 indicated that
they do. We asked the types of data they store and gave them
4 choices: (i) string; (ii) numeric; (iii) date or timestamp; and
(iv) binary. Table 8c shows participants’ responses. Five par-
ticipants also indicated storing JSON, lists, and geographic
coordinates using the Other option.

Dynamism: We asked the participants how frequently the
vertices and edges of their graphs change, i.e., are added,
deleted, or updated. We provided 3 choices with the follow-
ing explanations: (i) static: there are no or very infrequent
changes; (ii) dynamic: there are frequent changes, and all
changes are stored permanently; and (iii) streaming: there
are very frequent changes and the participants’ software dis-
cards some of the graph after some time. Table 9 shows the
responses. Surprisingly 18 participants (9 researchers and
9 practitioners) indicated having streaming graphs.

3.2 Computations

In this section, we describe the computations that the partic-
ipants perform on their graphs.

3.2.1 Graph Computations

Our goal in this question was to understand what types
of graph queries and computations, not including machine
learning computations, participants perform on their graphs.
We asked amultiple choice question that contained as choices
a list of queries and computations followed by a short answer
question that asked for computations that may not have ap-
peared in the first question as a choice. In the multiple choice
question, instead of asking for a set of ad-hoc queries and
computations, we selected a list of graph queries and compu-
tations that appeared in the publications of the 6 conferences
we reviewed (recall Section 2.2), using our best judgment to
categorize similar computations under the same name. We
describe our detailed methodology in Appendix A.

Table 10 shows the 13 choices we provided in the multi-
ple choice question, the responses we got, and the number of
academic publications that use or study each computation.
As shown in the table, all of the 13 computations are used by
both researchers and practitioners. Except for two computa-
tions, the popularity of these computations is similar among
participants’ responses and academic publications. The ex-
ceptions are neighborhood and reachability queries, which
are respectively used by 51 and 27 participants, but stud-
ied respectively in 10 and 8 publications. Finding connected
components appears to be a very popular and fundamental
graph computation—it is the most popular graph computa-
tion overall and also among practitioners. We suspect it is
a common pre-processing or cleaning step, e.g., to remove
singleton vertices, across many tasks.

A total of 13 participants answered our follow-up short
answer question on other graph queries and computations
they run. Example answers include queries to create schemas
and graphs, custom bio-informatics algorithms, and finding
k-cores in a weighted graph.

3.2.2 Machine Learning Computations

We next asked participants what kind of machine learning
computations they perform on their graphs. Similar to the
previous question, these questions were formulated to iden-
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Table 10: Graph computations performed by the participants
and studied in publications.

Computation Total R P A

Finding Connected Components 55 18 37 31

Neighborhood Queries (e.g., finding 2-degree
neighbors of a vertex)

51 19 32 9

Finding Short / Shortest Paths 43 18 25 28

Subgraph Matching (e.g., finding all diamond
patterns, SPARQL)

33 14 19 52

Ranking & Centrality Scores (e.g., PageRank,
Betweenness Centrality)

32 17 15 45

Aggregations (e.g., counting the number of tri-
angles)

30 10 20 24

Reachability Queries (e.g.,checking if u is
reachable from v)

27 7 20 8

Graph Partitioning 25 13 12 12

Node-similarity (e.g., SimRank) 18 7 11 11

Finding Frequent or Densest Subgraphs 11 7 4 4

Computing Minimum Spanning Tree 9 5 4 4

Graph Coloring 7 3 4 8

Diameter Estimation 5 2 3 2

tify the machine learning computations that appeared in the
academic publications we reviewed. We describe our de-
tailed methodology in Appendix B. We asked the following
2 questions:
• Which machine learning computations do you run on
your graphs?The choiceswere: clustering, classification,
regression (linear or logistic), graphical model inference,
collaborative filtering, stochastic gradient descent, and
alternating least squares.
• Which problems that are commonly solved with machine
learning do you solve using graphs? The choices were:
community detection, recommendation system, link pre-
diction, and influence maximization.5

Tables 11a and 11b show the responses and the number of
academic publications that use or study each computation. It
is clear that machine learning is used very widely in graph
processing. Specifically, 61 participants indicated that they
either perform a machine learning computation or solve a
problem using machine learning on their graphs. Clustering
is the most popular computation performed, while commu-
nity detection is the most popular problem solved using ma-
chine learning. None of the participants selected alternating
least squares as a computation they perform.

5 In the publications, link prediction referred to problems that pre-
dict a missing edge in a graph or data on an existing edge. Influence
maximization referred to finding influential vertices in a graph, e.g.,
those that can bring more vertices to the graph. We did not provide
detailed explanations about the problems to the participants.

Table 11: Machine learning computations and problems per-
formed by the participants and studied in publications.

(a) Machine learning computations.

Computation Total R P A

Clustering 42 22 20 22
Classification 28 10 18 34
Regression (Linear / Logistic) 11 5 6 2
Graphical Model Inference 10 5 5 5
Collaborative Filtering 9 4 5 5
Stochastic Gradient Descent 4 2 2 9
Alternating Least Squares 0 0 0 1

(b) Problems solved by machine learning algorithms.

Computation Total R P A

Community Detection 31 15 16 15
Recommendation System 26 10 16 5
Link Prediction 25 10 15 11
Influence Maximization 14 5 9 6

3.2.3 Other Questions on Computations

Streaming Computations: We asked the participants if they
performed incremental or streaming computations on their
graphs: 32 participants (16 researchers and 16 practition-
ers) indicated that they do. We followed up with a ques-
tion asking them to describe the incremental or streaming
computations that they perform. A total of 4 participants
indicated computing graph or vertex-level statistics and ag-
gregations; A total of 3 participants indicated incremental
or streaming computation of the following algorithms: ap-
proximate connected components, k-core, and hill climbing.
For completeness, we list the other computations participants
mentioned: computing node or community properties, cal-
culating approximate answers to simple queries, incremental
materialization, incremental enhancement of the knowledge
graph, and scheduling.

We note that the 22 software products in Table 1 have
limited or no support for incremental and streaming compu-
tations. We further note that we did not find any user in our
further reviews of other sources or interviews that performed
continuous computation on a very dynamic stream of edges
or nodes.

Traversals: We asked the participants which fundamental
traversals, breadth-first search or depth-first search, they use
in their algorithms. Table 12 shows the responses. Partici-
pants commonly use both kinds of traversals.

3.3 Graph Software

We next review the properties of the different graph software
that the participants use.
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Table 12: Graph traversals performed by the participants.

Traversal Total R P

Breadth-first-search or variant 19 5 14
Depth-first-search or variant 12 4 8
Both 22 8 14
Neither 20 11 9

Table 13: Software for graph queries and computations.

Software Total R P A

Graph Database System (e.g., Neo4j, Ori-
entDB, TitanDB)

59 20 39 6

Apache Hadoop, Spark, Pig, Hive 29 11 18 10

Apache Tinkerpop (Gremlin) 23 9 14 1

Relational Database Management System
(e.g., MySQL, PostgreSQL)

21 6 15 7

RDF Engine (e.g., Jena, Virtuoso) 16 8 8 12

Distributed Graph Processing Systems (e.g.,
Giraph, GraphX)

14 8 6 36

Linear Algebra Library / Software (e.g., MAT-
LAB, Maple, BLAS)

8 6 2 6

In-Memory Graph Processing Library (e.g.,
SNAP, GraphStream)

7 5 2 4

3.3.1 Software Types

Software for Querying and Performing Computations:
We asked the participants which types of graph software
they use to query and perform computations on their graphs.
The choices included 5 types of software from Table 1 as
well as distributed data processing systems (DDPSes), such
as Apache Hadoop and Spark, relational database manage-
ment systems (RDBMSes), and linear algebra libraries and
software, such as BLAS and MATLAB. Table 13 shows the
exact choices and responses: 84 participants answered this
question and each selected 2 or more types of software. We
highlight 3 interesting observations:

• Popularity ofGraphDatabase Systems: Themost popular
choice was graph database systems. We suspect this is
partly due to their increasing popularity and partly due
to the inherent bias in the participants we recruited—
as explained in Section 2.1.2, more of them came from
users of graph database systems. We did not ask the
participants which specific graph database system they
used.
• Popularity of RDBMSes: 21 participants (6 researchers
and 15 practitioners) chose RDBMSes. We consider this
number high given that we did not recruit participants
from themailing lists of any RDBMS. Interestingly, 16 of
these 20 participants also indicated using graph database
systems. From our survey, we cannot answer what the
participants used RDBMSes for. It is possible that they

Table 14: Software used for non-querying tasks.

Software Total R P A

Graph Visualization 55 22 33 15
Build / Extract / Transform 14 8 6 0
Graph Cleaning 5 1 4 2
Synthetic Graph Generator 4 3 1 49
Specialized Debugger 2 0 2 0

Table 15: Architectures of the software used by participants.

Architecture Total R P

Single Machine Serial 31 17 14
Single Machine Parallel 35 21 14
Distributed 45 17 28

use an RDBMS as the main transactional storage and
a graph database system for graph-specific tasks such as
traversals. This was the case in the applications described
to us in our interviews (see Section 5).
• Unpopularity of DGPSes: Only 6 practitioners indicated
using a DGPS, such as Giraph, GraphX, and Gelly. This
contrasts with DGPSes’ popularity among academics,
where they are the most popular systems, studied by 36
publications. One can consider graph database systems
as RDBMSes that are specialized for graphs andDGPSes
as DDPSes that are specialized for graphs. In light of this
analogy, we note that there is an opposite trend in the us-
age of these groups of systems. While more participants
indicated using graph database systems than RDBMSes,
significantly more participants indicated using DDPSes
than DGPSes.

Software for Non-Querying Tasks: We asked the partici-
pants which types of graph software, possibly an in-house
one, they use for tasks other than querying graphs. Table 14
shows the choices and the responses. We highlight one inter-
esting observation:

• Importance of Visualization: Visualization software is,
by a large margin, the most popular type of software par-
ticipants use among the 5 choices. This clearly shows that
graph visualization is a very common and important task.
As we discuss in Section 3.4, participants also indicated
visualization as one of their most important challenges
when processing graphs.

3.3.2 Other Questions on Software

Software Architectures: We asked the participants the ar-
chitectures of the software products they use for process-
ing graphs. The choices were single machine serial, single
machine parallel, and distributed. Table 15 shows the re-
sponses. Distributed products were the most popular choice
and users’ selections highly correlatedwith the size of graphs
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Table 16: Graph processing challenges faced by participants.

Challenge Total R P

Scalability (i.e., software that can process
larger graphs)

45 20 25

Visualization 39 17 22

Query Languages / Programming APIs 39 18 21

Faster graph or machine learning algorithms 35 19 16

Usability (i.e., easier to configure and use) 25 10 15

Benchmarks 22 12 10

More general purpose graph software (e.g.,
that can process offline, online, and streaming
computations)

20 9 11

Graph Cleaning 17 7 10

Debugging & Testing 10 2 8

they have. For example, 29 of the 45 participants that selected
distributed architecture had graphs over 100M edges.

Data Storage in Multiple Formats: We asked the partic-
ipants whether or not they store a single graph in multiple
formats: 33 participants answered yes and the most popular
multiple format combination was a relational database for-
mat and a graph database format. Appendix C provides the
detailed responses.

3.4 Practical Challenges

In this section, we first discuss the challenges in graph pro-
cessing that the participants identified, followed by a discus-
sion of the challenges that we identified through our review
of user emails and code repositories of different types of
graph technologies.

3.4.1 Challenges Identified from Survey

We asked the participants 2 questions about the challenges
they face when processing their graphs. First, we asked them
to indicate their top 3 challenges out of 10 choices we pro-
vided. Table 16 shows the choices and the participants’ re-
sponses. Second, we asked them to state their biggest chal-
lenge in a short-answer question. Three major challenges
stand out unequivocally from the responses:

• Scalability: The ability to process large graphs is themost
pressing challenge participants face. Scalability was the
most popular choice in the first question for both re-
searchers and practitioners. Moreover, it was the most
popular answer in the second question where 13 partici-
pants reiterated that scalability is their biggest challenge.
The specific scalability challenges that the participants
mentioned include inefficiencies in loading, updating,
and performing computations, such as traversals, on large
graphs.

• Visualization: Perhaps more surprisingly, graph visual-
ization emerges as one of the top 3 graph processing
challenges, as indicated by 39 participants in the first
question and 1 participant in the short-answer question.
This is consistent with the participants indicating visual-
ization as the most popular non-query task they perform
on their graphs, as discussed in Section 3.3.1.
• Query Languages and APIs: Query languages and APIs
present another common graph processing challenge, as
indicated by 39 participants in the first question and 5
participants in the short-answer question. The specific
challenges mentioned in the short-answer responses in-
clude expressibility of query languages, compliance with
standards, and integration of APIs with existing systems.
For instance, one participant found current graph query
languages to have poor support for debugging queries
and another participant indicated their difficulty in find-
ing software that complies fully with SPARQL standards.

3.4.2 Challenges Identified from Review

To go beyond the survey and to understand more specific
challenges users face or new functionalities users want, we
studied the user emails and code repositories of different
classes of software. Below, we categorize the challenges we
found on visualization in graph database systems, RDF en-
gines, DGPSes, and graph libraries, separately under Vi-
sualization. We also list the challenges we found in graph
database systems and RDF engines related to query lan-
guages separately underQuery Languages. The exact counts
of emails and issues we found for each challenge is in Ta-
ble 21 in the appendix.

Graph Database Systems and RDF Engines:
• High-Degree Vertices: Users want the ability to process
very high-degree vertices in a special way. One common
request is to skip finding paths that go over such vertices
either for efficient querying or because users do not find
such paths interesting.
• Hyperedges: Hyperedges are edges between more than
2 vertices, e.g., a family relationship between three in-
dividuals. In graph database systems and RDF engines,
there is no native-way to represent hyperedges. The user
discussions include suggestions to simulate hyperedges,
such as having a “hyperedge vertex” and linking the ver-
tices in the hyperedge to this mock vertex.
• Versioning and Historical Analysis: Users want the abil-
ity to store the history of the changes made to the vertices
and edges and query over the different versions of the
graph. These requests are made in systems that do not
support versioning and the discussions are on how to add
versioning support at the application layer.
• Schema and Constraints: Users want the ability to define
schemas over their graphs, analogous to DTD and XSD
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schemas for XML data [27], usually as a means to define
constraints over their data. Examples include enforcing
that the graph is acyclic or that some vertices always have
a certain property.
• Triggers: Users ask for trigger-like capabilities in their
graph database systems. Examples include automatically
adding a particular property to vertices during insertion
or creating a backup of a vertex or an edge in the filesys-
tem during updates. We note that some systems do sup-
port limited trigger functionality, such as OrientDB’s
hooks or Neo4j’s TransactionEventHandler API.

Graph Visualization Software:

• Customizability: One common challenge is to have the
ability to customize the layout and design of the rendered
graph, such as the shape or color of the vertices and edges.
• Layout: Another common challenge is drawing graphs
with certain structures on the screen according to a spe-
cific layout users had in mind. The most common exam-
ple is drawing hierarchical graphs, i.e., those in which
some vertices are drawn on top of other vertices in an or-
ganizational hierarchy. Other examples include the draw-
ing of star graphs, planar graphs, or a specialized tree
layout, such as a phylogenetic tree [60].
• Dynamic Graph Visualization: Several users want sup-
port for or have challenges in animating the additions,
deletions, and updates in a dynamic graph that is chang-
ing over time.

Users also have challenges in rendering large graphs with
thousands or even millions of vertices and edges.

Query Languages: One of the most popular discussions
in user emails of graph database systems and RDF engines
was writing different queries in the query language of the
software. In almost every case, there was a way of satisfying
the users’ needs. Below we list 2 such types of queries that
could be interesting to researchers.

• Subqueries:Many users have challenges in the expression
or performance of subqueries, i.e., using a query as part
of another query. The challenges vary across different
systems. Some users want the ability to embed SQL as a
subquery in SPARQL. Other users want the results of a
subquery to be a graph that can further be queried,6 or to
use a subquery as a predicate in another query.
• Querying across Multiple Graphs: A common request
in graph database systems and RDF engines is to con-
struct queries that span multiple graphs, such as using
the results of a traversal in one graph to start traversals

6 This feature is called composition and is supported in SPARQL but
not in the languages of some graph database systems.

in another. This is analogous to querying over multiple
tables by joins in RDBMSes.7

Profiling and debugging slow queries and using indices cor-
rectly to speed up queries are other common topics among
users.

DGPSes and Graph Libraries:
• Off-the-Shelf Algorithms: The most common request we
found in DGPSes and graph libraries is the addition of
a new algorithm that users could use off-the-shelf. All
of these software products provide lower-level program-
ming APIs using which users can compose graph algo-
rithms. A small number of users want enhancements to
these APIs as well. From our review, it appears that users
of these software products find more value in directly us-
ing an already implemented algorithm than implement-
ing the algorithms themselves.
• Graph Generators: All of the DGPSes and graph li-
braries in our list have modules to generate synthetic
graphs. Our review revealed that users find these graph
generators useful, e.g., for testing algorithms. A com-
mon request was the ability to generate different kinds
of synthetic graphs, such as k-regular graphs or random
directed power-law graphs.
• GPU Support: Several users, both in DGPSes and graph
libraries, want support for running graph algorithms on
GPUs.

In every DGPS we reviewed, a common challenge is users’
computations running out of cluster memory or having prob-
lems when using disk. We also note that except for Gelly,
every DGPS and every graph library either have a visualiza-
tion component or users have requests to add one, showing
the importance of visualization across users of a range of
different graph technologies.

3.5 Workload Breakdown

We asked the participants how many hours per week they
spend on 6 graph processing tasks and provided them with 3
choices: (i) less than 5 hours; (ii) 5 to 10 hours; and (iii) more
than 10 hours. Table 17 shows the choices and ranks the tasks
in terms of the number of participants that selectedmore than
10 hours first, then 5 to 10 hours, and then less than 5 hours.
According to this ranking, the participants spend the most
time in analytics and testing and the least time on ETL and
cleaning.

4 Applications from Whitepapers
4.1 Methodology

In order to understand the popular application areas and
fields using graph software, we surveyed the whitepapers of
software vendors. Whitepapers are documents that software

7 This functionality is supported in RDF engines but not supported
in some graph database systems.
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Table 17: Time spent by the participants on different tasks.

Task 0−5 hours 5−10 hours > 10 hours

Analytics 30 18 23
Testing 40 12 20
Debugging 37 18 15
Maintenance 46 14 13
ETL 44 14 10
Cleaning 52 10 6

vendors provide, often for marketing purposes, to give infor-
mation about the use cases of their products. In our case, we
consider whitepapers to be any document found on a soft-
ware vendor’s official website categorized as a whitepaper,
a use case, a case study, or a scenario. From the initial soft-
ware products in Table 1, only four graph database systems,
specifically ArangoDB, Neo4j, OrientDB and Sparksee had
whitepapers. To extend our review, we add the whitepapers
of four RDF engines that were not in our initial list: Alle-
groGraph [6], AnzoGraph [11], GraphDB by Ontotext [70],
and Stardog [91]. We note that we only found whitepapers
for graph database systems and RDF engines.

For each whitepaper, we selected the ones that describe
an application using the product, e.g., music recommenda-
tion or money laundering detection. We omitted whitepapers
that did not describe a specific application. For example, we
omitted whitepapers specific to the software architecture of
a product. In the end, we reviewed 89 whitepapers.

4.2 Applications

We labeled each whitepaper with a high-level application
category and the field of industry of the customer in the
case study. Table 18 shows the different applications, the
fields of industry in which the application was covered, and
the number of whitepapers from graph databases and RDF
systems that discussed the project. We found a total of 12
applications described in the whitepapers of graph databases
and 5 applications in the whitepapers of RDF systems. As
seen in the table, there is an overlap of the applications across
both types of systems.

The three most popular applications were as follows:

• Data Integration: 44 whitepapers discussed primarily
some data integration task that constructed a central,
highly heterogenous graph from multiple sources. Data
integration was also referred by some whitepapers as
master data management or knowledge graph creation.
This category does not contain the whitepapers that de-
scribed primarily another main business application but
performed data integration as an initial step.
Data integration whitepapers briefly mentioned a variety
of other applications that would be supported by the inte-
grated data, such as enterprise search. Many of these 44
whitepapers, as well as many whitepapers that discussed

a data integration initial step, emphasized that customers
found data integration easier in the semi-structured graph
models than structured relational tables.
• Personalization & Recommendations: The second most
popular application was the use of a graph-based applica-
tion data to personalize user interactions and provide bet-
ter recommendations for the customers of a business. For
example, one whitepaper described an e-commerce web-
site that created a graph representation of the behavior of
online shoppers and the interactions between customers
and products to help make new product recommenda-
tions [14]. Another example was a personalized course
curriculum service based on a hierarchical course topic
relationships, represented as a graph, and the individual
progress of each student [2].
Many whitepapers avoided technical terms, but the ap-
plications described seemed to read the neighborhoods
of users, represented as nodes in the underlying graph, to
retrieve useful signals to make a recommendation.
• Fraud & Threat Detection: The third most popular appli-
cation was the detection of fraud and threats in various
businesses. For example, one whitepaper described the
use of graphs to detect financial fraud in banks by looking
for rings in the graph formed after linking bank accounts,
personal details, and financial transactions [66]. Another
application detected and prevented cyber crimes bymon-
itoring for anomalous patterns in network traffic [1] rep-
resented as a graph.
As a key benefit of using graphs, whitepapers highlighted
that, compared to their equivalent SQL formulations,
fraud patterns were easier to express as subgraph queries.
Several whitepapers also mentioned that relational sys-
tems were not efficient enough to support these queries.

5 Applications from Interviews

5.1 Methodology

Whitepapers give an overview of the important applications
using different software but often contain very high level
and non-technical marketing language. To understand some
of the applications using graphs inmore depth, we invited the
participants of our online survey for an in-person interview.
33 participants had provided us with their email addresses
and 4 of them agreed. To extend our interviews, we reached
out to several of our contacts in major software companies
and graph vendors.We did 4 additional in-person interviews;
2 developers and 2 users of graph processing software in
major enterprises.

The occupations of our interviewees were as follows:
• Two IT consultants to several large enterprises on graph
technologies.
• A developer of graph processing systems at Alibaba.
• A developer of graph processing systems at Siemens.
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Table 18: Application areas and example uses of graphs in various fields described in graph software whitepapers.

Application Example Fields GDB RDF Total

Data Integration Building an ontology by in-
tegrating multiple heterogeneous
biomedical data sources

Aerospace, Art &Culture&Heritage, Education,
Entertainment, Finance, Food & Cooking, Gov-
ernment, Health & Life Sciences, Intelligence
& Law Enforcement, IT, Journalism, Marketing,
Retail, Social Media, Toys & Figurines

23 21 44

Personalization & Rec-
ommendation

Recommending products on an e-
commerce platform

Entertainment, Finance, Health & Life Sciences,
Hospitatility & Travel, IT, Manufacturing, Mar-
keting, Media, Music, Retail, Social Media,
Telecommunication

19 5 24

Fraud & Threat Detec-
tion

Detect cybercrime by searching for
anomalous patterns

Finance, Government, Insurance, Media, Retail 9 1 10

Risk Analysis & Com-
pliance

Risk reporting by banks to comply
with government regulations.

Finance, Health & Life Sciences, IT, Supply
Chain & Logistics

2 3 5

Identity & Access Man-
agement

Monitor direct and indirect owners
of businesses for financial analysis

Insurance, IT, Telecommunication 4 0 4

Infrastructure Manage-
ment & Monitoring

Manage cascading failures by
tracking server interdependencies

Intelligence & Law Enforcement, IT 3 0 3

Delivery & Logistics Routing and tracking delivery
parcels

Retail, Supply Chain & Logistics 2 0 2

SocialNetworkAnalysis Find themost viral users withmax-
imum reach to other users

Social Media 2 0 2

Other Applications Natural language question answer-
ing, Call graph analysis, Code
analysis, Drug discovery, Traffic
route recommendation

IT, Telecommunication, Traffic Management 3 2 5

• A principal scientist at Amazon working on knowledge
graphs.
• Engineers from a contact management company called
FullContact [32], an electric utility company called State
Grid [92], and a startup called OpenBEL [71] that devel-
ops data publishing tools for biologists.

We lead the interviews with an open-ended question ask-
ing the interviewee to walk us through a concrete business
application that uses graph data. The developers explained
the applications of their customers.We asked questions about
the details of the graph data, the graph computations they run,
and the graph processing software they use in their applica-
tions. In addition, we asked three extra questions to each in-
terviewee: (i) Where do you use graph visualization? (ii) Do
you do streaming computations on your graphs? (iii) Do you
have machine learning computations that use your graphs?

5.2 Overall Observations

We make four observations:

• None of the applications that used graphs representing
transactional business data used a graph database or an
RDF store as the main system of record. In each case, a

relational system was the main system of record and the
transactional data was replicated to a graph software for
the application to use. This gives a sense of where graph
databases andRDF systems are in the IT ecosystemof our
interviewees’ enterprises. The developer from Alibaba
mentioned data replication as an important challenge for
their internal customers.
• Intervieweesmentioned visualizing graphs in data explo-
ration, debugging, query formulation, and as a presen-
tation tool within the enterprise, for example to show a
manager the benefits of modeling an application data as
a graph.
• Our intervieweeswere not aware of any continuous stream-
ing computation performed on their graphs. Several in-
terviewees mentioned processing highly dynamic graphs
and buffering a window of several hours or days of these
graphs. However, the computations in those applications
were batch computations. For example, in one case, 3
days of business data would be copied over into a graph
software to search for subgraph patterns.
• The machine learning applications interviewees discu-
ssed used graphs to extract features about nodes in a graph
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that were representing a business entity, such as a product
or a customer. The feature extractions involved aggregat-
ing data from several hop neighborhoods of nodes and in
one case through a recursive path query. These features
would be used in vector representations of nodes and used
by a machine learning application to do a prediction. We
describe such a use case in Section 5.3.2.

We next describe some of the applications from our inter-
views in detail. We discuss several other applications in Ap-
pendix E. Overall there were similarities between the ap-
plications described by our interviewees and those from the
whitepapers but we also discovered some new applications.
We cover one such new application called contingency anal-
ysis in Section 5.6. Some interviewees modified or omit-
ted detailed information about their applications, data sets,
queries, software, or challenges. For example, they modified
what the vertices and edges actually are or gave the approx-
imate sizes of their graphs. We report the applications as
described by the interviewees.

5.3 Recommendations

5.3.1 Keyword Recommendations on Alibaba’s E-commerce
Website

When customers enter keywords to the search text box on
Alibaba’s e-commerce website, several keywords that are
related to the search are recommended. These recommended
keywords often aim to increase the diversity of products
the user sees on the site. Internally, these recommendations
are made by an application that uses a very large knowledge
graph and performs parallel traversals that find and rank paths
in this knowledge graph. There are two interesting aspects of
this application:
(i) Strict latency: The recommendation needs to be done in

several milliseconds. None of the other applications we
encountered during our interviews required such strict
latencies for the computations they had to perform.

(ii) Size and generation of the graph: The underlying graph
is primarily automatically generated from other data
sources and was one of the largest graphs we encoun-
tered during our interviews.
We describe the graph, the computation performed on the

graph, and the software that stores the graph and performs
the computation.

KnowledgeGraph:8 The graph contains three types of nodes:
(i) Products: A subset, approximately 10 million, of prod-

ucts sold on Alibaba.

8 Note that the use of term “knowledge graph” vs other terms such as
“property graph” or simply “graph” is slightly arbitrary. We found our
interviewees referring to any data stored in RDF stores as knowledge
graphs.We also found that interviewees referred to graphs that represent
abstract things, e.g., keyword topics or concepts, also as knowledge
graphs even if they were not stored in an RDF system.

(ii) ProductCategories: Includes categories such as “shoes”,
“winter jackets”, “TVs”, or “electronics”.
There are approximately 10 thousand of categories.

(iii) Concepts: This is an umbrella term to refer to a very
large number of concrete and abstract real-world en-
tities. Examples include “football”, “sports”, “China”,
“young male” or “born in 80s”. A small part of the
concepts are manually curated inside Alibaba and some
are obtained from the Chinese edition of Wikipedia.
However, majority of them are previous search key-
words that users have used. These are extracted from
the search logs. As we describe momentarily, these are
also the keywords that the application recommends to
users. There are approximately 100 million of these.

There are two main edge types:

(i) Product-category edges: In most cases each product
belongs to exactly one category. So there are approxi-
mately 10 million of these.

(ii) Concept-product and concept-category edges: There
are edges between concepts and products and between
concepts and categories, indicating a relation between a
concept and a product or a category. The edges are au-
tomatically generated through several techniques, such
as an analysis of the logs that contain keywords used by
users, their clicks, and purchases or using natural lan-
guage processing on reviews. To each generated edge, a
weight is assigned to indicate the strength of the connec-
tion between the concept and the product or category.
There are over 100 billion of these edges.

Recommendation Computation: The recommendation com-
putation happens as follows: Each user is tagged with a sub-
set of the concepts indicating their known properties, such
as “male” vs “female”, “IT professional” vs “accountant”
or “born in 80s”. There are several dozen such tagged con-
cepts. From each tagged concept a roughly 4-hop breadth-
first search traversal is performed to find new concepts. Each
path from a tagged concept to each newly found concept c
is given a weight, based on the weights of the edges on the
path, and aggregated to give a relevance weight to c. All new
concepts are finally ranked and a subset of them are returned
to the users. This entire computation has to happen in 4ms.

Software:The graph is stored in an in-house distributed graph
database. The database stores the structure and properties on
the nodes and edges in a distributed key-value store. So, both
the neighbors and weights are stored as key value pairs and
the 4-hop neighborhoods of nodes often need to be fetched
from different machines. Part of the graph is kept in memory
and part is kept in SSDs. The database supports the Gremlin
language [41] and the property graph model. The traversals
are written in the Gremlin traversal API and resulting paths
are aggregated in custom code written outside of Gremlin.
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5.3.2 Configuration Recommendation: Siemens’ Automa-
tion Systems

The context of our next application, also described briefly
here [58], is the configuration of industrial automation sys-
tems, a project by Siemens. Such systems are comprised of a
combination of mechanical, hydraulic, and electric devices
with complex constraints between individual component and
a multitude of choices—for example, the number of input
and output ports, line voltage, budget vs. premium options,
etc. A user, which might be an end customer or a sales rep-
resentative, incrementally builds a plan that fulfills all the
required functionalities, selecting from a product catalog.
While some configuration information is explicitly captured
in terms of product features, there is also a large amount of
tacit or implicit knowledge. One solution that Siemens has
been exploring is the use of recommendation techniques to
aid in the selection of components.

The approach combines product information as well as
past user behavior, modeled as a knowledge graph and stored
in an RDF system. Product information comes from a do-
main ontology and captures semantic relations such as “has
line voltage”, “is of type”, and “contains”, as well as prod-
uct hierarchies, e.g., “S7-1500” is a subtype of “S7”, which
in turn is a specialization of a “Control System”. Informa-
tion of past behavior comes from historical solutions, i.e.,
automation solutions that have been previously configured.

The novelty of this project comes from the combination
of these two sources of evidence. When asked as to why a
knowledge graph as opposed to relational tables for storing
and integrating these heterogeneous sources, our interviewee
responded with two main reasons: first, the flexibility of
the data model, and second, a knowledge graph is closer to
how users conceptualize the data. Both of these points were
echoed by the white papers and other interviewees.

Although the graph database is an important component
of the overall solution, its role is little more than a repository
of features. The actual recommendation algorithm is based
on tensor factorization: the rows and columns correspond to
entities (tens of thousands), while each slice corresponds to
one relation, e.g., “contains”. Given the entities in a partial
solution, the system’s task is to recommend the most likely
item to complete the solution (using previously-configured
solutions as ground truth). That is, the tensor is materialized
from the graph database and used to train a model (written in
TensorFlow in this case). Thus, while this is perhaps an ex-
ample of a machine-learning application on graph databases
in a technical sense, the integration is rather shallow.

5.4 Fraud and Threat Detection

Four applications described in our interview with Alibaba
and one application described by one consultant to a large
financial institutionwere related to fraud and threat detection.
There were two commonalities between these applications:
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Owns

trans f er $100.00

purchase $95.00

P1 A3
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trans f er $100.00
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(a) Cycle patterns.
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(b) Bipartite transaction pattern.

Fig. 1: Patterns for detecting fake transactions.

(i) Searching a subgraph pattern: Each application was
based onfinding some subgraph pattern, e.g., a bipartite,
star, or cycle, in a very large transaction graph.

(ii) Use of graph visualization: In each case the detected
pattern was merely a signal of a potential fraud that
triggered an inspection by other systems or a human
for further investigation. Manual human investigations
involved using a graph visualization software and ex-
ploring the neighborhoods of the emerged pattern. The
consultant also mentioned using visualization for dis-
covering the pattern to search for in the first place.

We briefly review some of these applications and when pos-
sible discuss the patterns searched.

5.4.1 Fake Transactions on Alibaba.com

This application detects fake transactions initiated by busi-
nesses that sell products on Alibaba’s e-commerce platform
to increase their ranking on the platform. There are two broad
patterns the application searches for: (i) cycle patterns shown
in Figure 1a; and (ii) a near-complete bipartite clique shown
in Figure 1b. These patterns are detected by different applica-
tions on different graphs. We describe the patterns, the input
graphs on which the patterns are searched, the software that
searches the patterns, and several challenges our interviewee
mentioned.

Cycle Patterns

Pattern: The top pattern in Figure 1a is searching for an evi-
dence that there is a business owner P1 who is paying a fake
buyer P2 to buy products from P1. In particular, the pattern
searches for transaction where P1 transfers some amount of
money from her account A1 to an account A2, belonging to
the fake buyer, which transfers a similar amount of money
back to an account A3 that is also owned by P1. In a slightly
more advanced version of the pattern, also discussed in a
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recent publication [76], a friend of P1 sends some amount
of money to the fake buyer to initiate the fake purchase. Our
interviewee noted that these cycle patterns are simplified
versions of multiple other fraud patterns searched by other
internal and external customers of Alibaba on other transac-
tion graphs. Detecting such cyclic patterns in fraud-related
applications also appeared in 7 use cases in the whitepapers.

InputGraph:These cyclic patterns are continuously searched
for in a graph that contains data about the financial accounts
of the businesses on Alibaba, as well some social connection
information, e.g., contact information of Alibaba customers
or other available social information.

Software: The current software stack is a bit complex, but
briefly involves the following steps: (i) a stream of financial
transaction edges are buffered for a period of time, roughly
10 seconds; (ii) the necessary neighborhood of those edges
are extracted from a distributed in-house graph database;
and (iii) the pattern is searched on the extracted graph in an
single-node special solution. The extracted graph is several
millions of edges and vertices. The applications latency is
roughly 30 seconds.

Bipartite Patterns

Pattern: Detecting fraud through cycle patterns is difficult
because often money transfers do not go through Alibaba’s
systems. A more effective way is to find near-complete (and
not necessarily fully complete) bipartite graph of products
and customers on a graph extracted from the actual transac-
tions on the Alibaba platform.

Such patterns are signals that a large number of fake
customers buy the same set of products, say owned by the
same business. This activity is similar to click farming [22]
to increase ad revenue of websites. Part of Alibaba’s fraud
detection system searches for multiple large instances of the
pattern, where the pattern can contain hundreds of products
and customers.

Input Graph: In a simplified form, the application runs on
a graph that contains businesses, products, and customers
as separate nodes and sells edges between businesses and
products,purchased edges between products and customers.
These patterns are very complex and detecting them on a
large window of purchase transactions is very challenging,
so the application limits the window to several days of trans-
actions. This generates an input graph with a few hundred
million nodes, and several billion edges.

Software: The application runs offline and uses a single-node
custom-built in-memory graph processing software.

Challenges: One challenge is to detect the nodes that are
part of a pattern without enumerating the instances of these
patterns. Enumeration of patterns that have a high-degree
of symmetry is expensive because across two matches of

the pattern, there can be a large overlap of the nodes. As
a simple example, consider searching for a (10, 10) com-
plete bipartite pattern and the input graph contains a (20,
10) complete bipartite pattern. There will be

(20
10
)
many in-

stances of the smaller pattern inside the larger pattern, even
if there are only 30 different nodes across these matches. A
second challenge is scalability. The application would like to
search the patterns ideally across 100s of billions of edges,
by generating the graph from a much larger time period of
transactions.

Other Patterns:We omit a detailed description but the inter-
viewee described two other use cases:

• The first application detects gambling activity on Alipay,
which is an online payment platform. The input graph
contains customers’ Alipay accounts as nodes and Alipay
groups, a service to allow groups of people to exchange
money amongst themselves. The edges are membership
edges between customers and groups. For each gambling
game, a set of gamblers start and join a new group. Sim-
ilar to the fake transactions application, the pattern in its
simplified form forms a near-complete bipartite graph of
accounts and groups.
• Another application monitors attacks and threats on Al-
ibaba Cloud’s network and traffic graph, which contains
information about the hosts, e.g., IP addresses, ports,
domain names, and the traffic between the hosts. The
application searches a star pattern consisting of a sin-
gle node with several labeled edges, some with regex
patterns, to match address and host name patterns. The
graph is highly dynamic, and the application searches
patterns on a snapshot that contains only a few days’
data, which contains over 100 billion edges.

5.4.2 Application at a Large Financial Institution

Our consultant interviewee described a fraud detection ap-
plication for a large financial institution that had customer
accounts and different transactions between accounts. The
searched pattern was quite complex and was not described in
detail. Broadly it involves searching for connected accounts
over very long paths in the graph, where the nodes that are
close to the center of these paths have an unusually high
number of transactions, i.e., edges, and amounts of transac-
tions. Interestingly, when asked how they observed that this
pattern is a signal of fraud, the interviewee said that initially
he manually searched for fraudulent patterns. Specifically,
he visualized large chunks of the graph, sometimes contain-
ing several thousands of nodes, on a visualization software,
and eye-balled known fraudsters’ activities. He noticed this
pattern as part of this visualization activity.
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5.5 Question Answering with Personal Assistant Products of
Alibaba and Amazon

Alibaba andAmazon both produce voice-controlled personal
assistant products, AliGenie [5] and Alexa [4], respectively,
that can be accessed from different devices, such as smart
speakers or mobile phones for several services. One of these
services is to answer factual questions asked by human users
through speech. Our interviewees from both companies de-
scribed similar applications that use a knowledge graph to
answer these questions.

The questions asked by users can be highly varied and
require knowledge from public information, corporate infor-
mation, or user-specific information, e.g., about the movies
the user has seen. Our interviewees both described similar
applications that use a knowledge graph to answer questions.

In both cases, the interviewees could not provide the de-
tails of these graphs but brieflymentioned that the graph used
to answer these questions include many internal and external
sources. In Alibaba’s case, the Chinese edition ofWikipedia,
information fromAlibabaMusic, information about the busi-
nesses that sell products on Alibaba were mentioned. Both
interviewees mentioned the challenges of integrating such
numerous and diverse internal and external sources.

The high-level steps of both applications were very sim-
ilar and consisted of components that perform voice recog-
nition and natural language processing to understand the im-
portant entities used in the query. For example, in the ques-
tion “What are the movies that Tom Hanks played in 2018?”,
“TomHanks” would be identified as the main entity. Then all
nodes that are referred to as Tom Hanks are identified from
the graph and a local search is made around these nodes to
find nodes that are of type movies and have date informa-
tion. The details of these searches were not described but in
both cases many nodes will bematched, returned, and ranked
before an answer is produced. Both interviewees mentioned
doing semantic inference using ontologies, e.g., to infer that
the word “played" is semantically related to “acted in”, to
extend the search or rank the results.

Interviewees provided few details about the software on
which the knowledge graph is stored and the search is per-
formed. In the case of Amazon, the graph was stored in RDF
format and indexed in an in-house software (not an RDF
system). In the case of Alibaba, although each edge (or fact)
in the graph was extracted as an RDF triple, the graph was
then stored in an in-house graph database that supports the
property graph model.

5.6 Contingency Analysis of Power Failures at State Grid

Contingency analysis is a preemptive analysis done on an
electric power grid to check the severity of different possible
failures.

Our interviewee from StateGrid described a contingency
analysis systemdesigned for the grid in oneChinese province.

In contrast to other applications which often used one large
graph, this application, logically, uses a very large number of
small graphs. Interestingly, these graphs are very similar to
each other and the application repeats the same computation
on each graph in parallel. We describe the input graph, the
computation, and the software used by the application.

InputGraph:The application has a base graph that represents
the components of the power grid using the abstract bus-
branch standardized model [42]:

• Vertices correspond to buses that represent electrical
nodes, which can include power system elements like
substations, loads, and generators. Operational param-
eters such as bus id, load power, voltage magnitude,
voltage angle, self impedance, and power injection are
stored as vertex attributes. There are approximately 2.5K
vertices.
• Edges correspond to branches that represent electrical
paths for current flows, such as transmission lines and
transformers. Operational parameters such as power flow,
line impedance, and transformer turns ratio are stored as
edge attributes. There are approximately 3K edges.

This is a dynamic graph and the attributes on the edges are
changing every few seconds and the topology changes, e.g.,
a new node is added or removed, every few minutes.

Computation: To determine how the failure of a component
affects the flow of power in the grid, the application gen-
erates a few thousand logical derived graphs from the base
graph. Each derived graph modifies the base graph slightly,
say by removing a single edge, to simulate a potential fail-
ure. For each derived graph G′, the application formulates
some power equations. We do not provide the details of these
equations but an overview can be found in reference [98]. In
a simplified form, readers can think of these as equations
of the form Ax = B, where A and B are power-related ma-
trices, and each row of which represents information about
the neighborhood of a vertex in the derived graph. These
equations are solved in parallel using matrix factorization.
We note that there is a significant potential to reuse the com-
putation results across the derived graphs, as the graphs are
very similar. The solution x’s are analyzed to assign severity
values to each derived graph and an alert is raised for abnor-
mally high severity values, indicating the system has found
a potential failure case, which could have severe outcomes.

Software used: The base graph is stored in Tigergraph [93].
Derived graphs are logical and not explicitly stored but their
corresponding matrices A and B are read from Tigergraph
in parallel and moved to a custom code that solves the power
flow linear algebra equations. The overall latency of the
application is several seconds. Although this is not done
currently, some equations can also be directly solved using
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iterative vertex-centric computations on the base graph di-
rectly [98].

6 Related Work
To the best of our knowledge, our survey is the first study
that has been conducted across users and of a wide spectrum
of graph technologies and various public information about
these technologies to understand graph datasets, computa-
tions, and software that is in use, the business applications
that use graphs and the challenges users face.

Several surveys in the literature have conducted user stud-
ies to compare the effectiveness of different techniques used
to perform a particular graph processing task, primarily in
visualization [19, 46] and query languages [50, 74, 77]. Ad-
ditionally, several software vendors have conducted surveys
of their users to understand how their software is used to
process graphs. Some of these surveys are publicly avail-
able [31,67,89]. However, these surveys are limited to study-
ing a specific software product.

There are also numerous surveys in the literature study-
ing different topics related to graph processing. Examples in-
clude surveys on query languages for graph database systems
andRDF engines [10,44,47], graph algorithms [3,45,53,97],
graph processing systems [16,61], and visualization [24,95].
These surveys do not study how users use the technologies
in practice.

7 Conclusion and Future Work
Managing and processing graph data is prevalent across a
wide range of fields in research and industry. We surveyed
89 users, interviewed 8 users, and reviewed user emails,
code repositories, and whitepapers of a large suite of soft-
ware products. The participants’ responses and our review
provide useful insights into the types of graphs users have,
the software and computations users use, the business ap-
plications they develop, and the major challenges users face
when processing their graphs. We hope that these insights
and in particular the challenges we highlight will help guide
research on graph processing.

We conclude with two final remarks. First, we found
product-order-transaction graphs to be the most popular type
of graph. Workloads that process these product data appear
in popular SQL benchmarks, such as TPC-C [94], and are
well studied in research on relational systems. However, sev-
eral existing graph benchmarks, such as LDBC [59] and
Graph500 [36], do not yet provide workloads and data to
process product graphs. One such benchmark is the Wat-
Div benchmark [7] that generates RDF triples containing
information about products and purchases. Developing sim-
ilar benchmarks and popularizing their use would be highly
beneficial to the research community. Such benchmarks are
great facilitators of research.

Second, query languages and APIs emerged as one of
the top challenges in our survey and certainly the most pop-

ular discussion topic in emails and code repositories. These
challenges can be partly mitigated by a collaborative effort
to standardize the query languages of different graph soft-
ware that satisfy users’ needs. One such successful effort is
the adoption of SPARQL as a standard for querying RDF
data. Similar efforts are ongoing for developing standard
query languages and JDBC-like interfaces [51] for property
graphs, such as the Gremlin language [79] and the efforts to
combine openCypher [72], PGQL [78], and G-CORE [9] to
create GSQL [43]. There is also ongoing effort to develop a
standard set of linear algebra operations for expressing graph
algorithms [64].
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A Choices of Graph Computations
One way to ask this question is to include a short-answer question that
asks “What queries and graph computations do you perform on your
graphs?” However, the terms graph queries and computations are very
general and we thought this version of the question could be under-
specified. We also knew that participants respond less to short-answer
questions, so instead we first asked a multiple choice question followed
by a short answer question for computations that may not have appeared
in the first question as a choice.

In a multiple choice question, it is very challenging to provide a list
of graph queries and computations from which participants can select,
as there is no consensus on what constitutes a graph computation, let
alone a reasonable taxonomy of graph computations. We decided to
select a list of graph queries and computations that appeared in the
publications of six conferences, as described in Section 2.2. We use
the term graph computation here to refer to a query, a problem, or an
algorithm.

Table 19: Data storage formats.

Data Storage Format #

Graph Databases 10
Relational Databases 8
RDF Store 5
NoSQL Store (Key-value, HBase) 5
XML / JSON 4
JGF / GML / GraphML 4
CSV / Text files 3
Elasticsearch 3
Binary 2

For each of the 90 papers, we identified each graph computation,
if (i) it was directly studied in the paper; or (ii) for papers describing
a software, it was used to evaluate the software. We used our best
judgment to categorize the computations thatwere variants of each other
or appeared as different names under a single category. For example,
we identified motif finding, subgraph finding, and subgraph matching
as subgraph matching. When reviewing papers studying linear algebra
operations, e.g., a matrix-vector multiplication, for solving a graph
problem such as BFS traversal, we identified the graph problem and not
the linear algebra operation as a computation.

Finally, for each identified and categorized computation,we counted
the number of papers that study it and selected the ones that appeared
in at least 2 papers. In the end, we provided the participants with the 13
choices that are shown in Table 10.

B Choices of Machine Learning Computations
Similar to graph computation, machine learning computation is a very
general term. Instead of providing a list of ad-hoc computations as
choices, we reviewed each machine learning computation that appeared
in the 90 graph papers we had selected. Specifically, the list of machine
learning computations we identified included the following: (i) high-
level classes of machine learning techniques, such as clustering, classi-
fication, and regression; (ii) specific algorithms and techniques, such as
stochastic gradient descent and alternating least squares that can be used
as part of multiple higher-level techniques; and (iii) problems that are
commonly solved using a machine learning technique, such as commu-
nity detection, link prediction, and recommendations. We then selected
the computations, i.e., high-level techniques, specific techniques, or
problems, that appeared in at least 2 papers. As in the graph compu-
tations question, we used our best judgment to identify and categorize
similar computations under the same name.

C Storage in Multiple Formats
We asked the 33 participants who said that they store their data in
multiple formats, which formats they use as a short-answer question.
Out of the 33 participants, 25 responded. Their responses contained
explicit data storage formats as well as the internal formats of different
software. Table 19 shows the number of responses we received for the
main formats. A relational database and a graph database format com-
bination was the most popular combination. Other combinations varied
significantly, examples of which include HBase and Hive, GraphML
and CSV, and XML and triplestore.

D Other Tables from the Survey
Table 20 shows the sizes of graphs we found in user emails and issues.
Table 21 shows the number of emails and issues we identified for each
specific challenge we discussed in Section 3.4.2. Table 22 shows the
total number of emails and issueswe reviewed for each software product
from January to September of 2017. The table also shows the number
of commits in the code repositories of each software product during the
same period.
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Table 20: Graph sizes in user emails and issues.
(a) Number of vertices.

Vertices #

100M−1B 10
1B-10B 17
10B−100B 1
>100B 2

(b) Number of edges.

Edges #

1B−10B 42
10B−100B 17
100B−500B 6
>500B 1

Table 21: Challenges found in user emails and issues.

Challenge #

Graph DBs and RDF Engines

High-degree Vertices 24
Hyperedges 18
Triggers 18
Versioning and Historical Analysis 14
Schema & Constraints 10

Visualization Software

Layout 31
Customizability 30
Large-graph Visualization 8
Dynamic Graph Visualization 4

Query Languages

Subqueries 7
Querying Across Multiple Graphs 6

DGPS and Graph Libraries

Off-the-shelf Algorithms 41
Graph Generators 7
GPU Support 3

E Other Applications from Interviews

Large Scale Data Integration for Analysis of Turbines: Our intervie-
wee from Siemens described an application that Siemens engineers
use to analyze different properties of gas turbines Siemens produces
using a knowledge graph. The application emphasized the advantage
of using graphs to integrate different sources of corporate data, in this
case mainly about where turbines are installed, measurements from the
installed turbines’ sensors, and information about maintenance activ-
ity on the turbines. The knowledge graph is stored in an RDF engine
and engineers ask queries, such as “What is the mean time failure of
turbines with coating loss?” through a visual interface where they nav-
igate the different types of nodes in the knowledge graph and express
aggregations. The visually expressed queries get translated to SPARQL
queries.

Contact Deduplication: One of our interviews was with two engineers
from a a company called FullContact that manages contact information
about individuals by integrating public and manually curated informa-
tion, which is sold to other businesses. An over 10B-edge and 4B-vertex
graphmodels this contact information as follows: nodes represent differ-
ent pieces of information, such as addresses, phone numbers, and edges
between nodes indicate the likelihood that the information belongs to
the same individual. The company uses GraphX to run a connected
components-like algorithm to finding the contacts that are likely to
belong to the same individual.

Other applications using knowledge graphs: One of our interviewees
was a consultant to a chemical company specializing in agricultural

Table 22: The number of reviewed emails and issues, and the
code commits in the repositories of each software product.

Technology Software #Emails #Issues #Commits

Graph Database
System

ArrangoDB 140 466 5264

Caley 50 57 151

DGraph 175 558 760

JanusGraph 225 308 411

Neo4j 286 243 4467

OrientDB 169 668 918

Sparksee 8 NA NA

RDF Engine
Apache Jena 307 126 471

Virtuoso 72 61 179

Distributed Graph
Processing Engine

Apache Flink
(Gelly)

34 68 48

Apache Giraph 19 34 23

Apache Spark
(GraphX)

23 28 11

Query Language Gremlin 409 206 1285

Graph Library

Graph for Scala 10 12 18

GraphStream 18 26 7

Graphtool 121 66 172

NetworKit 37 30 236

NetworkX 78 148 171

SNAP 57 17 34

Graph Visualization

Cytoscape 388 264 8

Elasticsearch
X-Pack Graph

50 38 NA

Gephi NA 147 10

Graphviz NA 58 277

Graph Representa-
tion

Conceptual
Graphs

30 NA NA

chemicals. The company has an over 30 billion-edge knowledge graph
on pesticides, seeds, chemicals that is stored in a commercial RDF
system. This graph is used by many applications, such as, to track the
evolution of seeds, to power internal wiki pages and tools used by
analysts. Another interviewee was the founder of a startup that works
on tools that can be used by biologists to publish biological knowledge.
Our interviewee described examples of knowledge graphs that model
the cellular activity in the context of different species’ different tissues.
Triples included facts about which genes transcribe which protein and
which proteins’ presence decreases other proteins’ presence, etc. [71].
The example applications were similar broadly to our interviewee from
the chemical company and power wikis and website which biologists
use to analyze these interactions.
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